#### FST Meeting Oct 14-15,2004 - RGS

#### Some RGS "program" Highlights

**Modeling Progress** 

Synchrotron Efficiency tests

Configuration Studies at CDF and IMDCwell-defined, well-documented RGS OPG

Technology development highlights will be given by individual teams

## Grating Trade Study

#### General Approach:

- Develop an independent model of off-plane gratings
- •Assess confidence that gratings can be made to meet model expectations, and estimate fidelity of modeled performance
- •Compare in-plane and off-plane modeled performance
- •Examine systems engineering issues
- Assessment, evaluation and recommendation

#### Significant Progress has been made:

- •Modeling of spectral resolution reported at SPIE June '04 Plan to report next FST meeting
- •Synchrotron tests give a handle on estimating realistic grating efficiencies, constrain polarization effects (reported today by Martin Laming)

#### Speakers

Chih-Hao Chang and Mireille Akilian

Advances in X-ray Reflection Grating Technology

20 min

W. Cash Status of Off-plane gratings

10 min

J. Martin Laming

Progress on off-plane gratings calibration at

Brookhaven NSLS

10 min

# Predicted OPG performance in various configurations (approx)



### Raytrace assumptions and layout

- •Used S-Lang+ISIS (see <a href="http://www.s-lang.org">http://www.s-lang.org</a> and http://space.mit.edu/CXC/isis/) ISIS is scriptable in S-Lang - whole raytrace was *less* than 1000 lines of code!
- •SXT focus defines origin
- •Reference grating at (0,600,8988)
- •Period=1724A (1/d=5800l/mm),  $\alpha$ =30, angle of incidence 2.545 deg with radial grooves\*
- •Reference module contains 10 **identical gratings** fanned and oriented to overlap 0th order at (0, 799.8, -17.79), and to force the dispersion arcs to coincide at the top. Reference grating is at (0,600,8988)
- •7 **identical modules** arrayed **in plane** 600mm from optical axis, along TOP
- •Modules oriented to overlap 0th order (this fixes the normal), and pivoted to define dispersion curve



Note path length differences!

## Pipeline process: from detector coordinates to spectrum

Two λ's separated by 0.028 A (see McEntaffer 2003)

25A, real optic, 100x100mm, top





Dispersion coords

dispersion Histogram (spectrum)

### 25A, real optic, 100x100mm,bottom



## Resolving power



Assumption of FWHM or half-power diameter to define "resolution" makes a big difference

# Impact of optic quality, grating size and placement



Note excellent agreement with Web's predictionprovided no gratings at the bottom of the SXT are included

#### Discussion + Conclusions

- Resolving powers over 1000 appear to be achievable ( $\lambda > 12$  A); (for shorter wavelengths, higher orders needed)
- Separate accommodation must be made for gratings at the bottom of the SXT (separate readout, curved gratings, modified optic, other?)
- Cross-comparison with other raytraces (Gallagher, Huang, Rasmussen) (Andy has input our suggested arrangement into his model and confirms these spectral resolutions are achieveable.)
- Raytrace for full array of modules remains to be done, with realistic effective areas
- Pipeline processing (extracting dispersion coordinates) is not straightforward
- Must consider additional background